Assembling, Visualizing, and Analyzing the Tree of Life

Posts tagged “open tree of life

Online publication to follow the three AVAToL projects

PLOS Currents: Tree of Life

PLOSPeer-reviewed articles about the Open Tree of Life as well as two related projects, Arbor and Phenomics, will be available on PLOS Currents: Tree of Life. The online publication allows the researchers to document their progress in developing software and other tools.

The three research endeavors were developed during an Ideas Lab last year as part of the National Science Foundation’s (NSF) Assembling, Visualizing, and Analyzing the Tree of Life (AVAToL) program. The Open Tree of Life project strives to produce the first draft of a comprehensive tree of life and provides tools for community enhancement and annotation. The Arbor project is developing comparative methods with utility across large sections and the entire tree of life. Finally, the Phenomics project is developing approaches for exploring and documenting phenotypic diversity across the tree of life.

“It’s meant to be a quick outlet for solid phylogenetic studies”

PLOS Currents websites encourage researchers to share their findings with a minimal delay to their peers. The Tree of Life section is focused on rapid publication of phylogenetic and systematic studies with novel data and/or analyses. According to Keith Crandall, one of the three editors of the journal and an investigator of the Open Tree of Life, “it’s meant to be a quick outlet for solid phylogenetic studies to get them and their data into the public domain.” (more…)


Presentation slides from Evolution 2013 available

Open Tree of Life at meetings

The Open Tree of Life project is one of the many phylogeny projects that are featured during the Evolution 2013 meeting that currently takes place in Snowbird (UT). The presentation slides from Karen Cranston, the principal investigator of Open Tree of Life, are available online (LINK). Presentation slides from other investigators are added here in the upcoming days.

Evolution 2013 is the joint annual meeting of the Society for the Study of Evolution (SSE), the Society of Systematic Biologists (SSB), and the American Society of Naturalists (ASN). The conference meets jointly with the iEvoBio conference. Open Tree of Life is represented at both events. About 1400 participants are expected to share their research in evolution, systematics, biodiversity, software, and mathematics.


Free webinar: Putting all species in a graph database

Biology + Technology = OTOL

Neo4j screenshotOne of the developers of the Open Tree of Life demonstrates Thursday, during a free webinar, how graph databases are used to construct a tree of life. The lecture is organized by Neo Technology, which is the maker of Neo4j, an open-source database that is used for OTOL.

Stephen Smith, an ecology and evolutionary biology professor at the University of Michigan, is going to explain how Neo4j and other digital technologies are assisting in constructing the tree of life. Starting at 10:00 PDT (19:00 CEST), he will also discuss other aspects of the interface of biology with next generation technologies.

“Our project is building the tools with which scientists in the community can continually improve the tree of life as we gather new information. Neo4j allows us to not only store trees in their native graph form, but also allows us to map trees to the same structure, the graph. So in fact, we are facilitating the construction of the graph of life,” says Smith.

Neo4j approached the Open Tree of Life team to present a webinar because it is a project that utilizes the Neo4j graph database to represent the interconnectedness of biological data. The company considers the project a great example of how a graph database can better model the natural world.

The online lecture is intended for a broad audience including beginner computer programmers, advanced hackers, data scientists, natural scientists, and anyone interested in the cross-section of science and technology, especially data modeling. Over 150 people have already registered online.

The registration form: LINK

Update: The video from this webinar is available on vimeo: http://vimeo.com/67870035


Karen Cranston talks about open licensing and Dryad

Making scientific data available

 

In case you haven’t seen the video yet, Open Tree of Life investigator Karen Cranston talked about sharing research data in open access data repositories during the Creative Commons 10-year celebration in Raleigh, North Carolina, last December. She mainly focused on the use of CC0 for Dryad, which is a curated general-purpose repository that makes the data underlying scientific publications discoverable and freely reusable. Cranston also mentioned that data availability leads to more citations, which is highly valued in the academic community. You can access the presentation slides as well (link).


Interview with Open Tree of Life investigator

Crandall featured on PeerJ blog

Keith Crandall for bio low resOpen Tree of Life investigator Keith Crandall is featured on the blog of PeerJ, which is a peer-reviewed, open access journal on the Internet. Crandall is an Academic Editor for PeerJ and is the director of the Computational Biology Institute at George Washington University. He was the editor for the “living fossil” manuscript that got much news media attention last week. Here’s the link to the interview.


Building an API for the Open Tree of Life database

Do you want an app for this?

Screen Shot 2012-08-29 at 9.22.20 PMThe developers of the Open Tree of Life would like to know from the phylogenetic community what kind of information they want to extract from its database when the first draft is released later this year. With those preferences, it is possible to develop an API that gives scientists the opportunity to build their own websites or software packages that use the data.

An API (application programming interface) is a digital tool that allows one website or software program to “talk” to another website to dig up certain pieces of data. For instance, a lot of people use Tweetdeck to navigate the ongoing bombardment of messages in the Twittersphere. In that case, Tweetdeck is connecting to Twitter, through its API, to receive and order the messages according to the preferences of the user.

In case of the Open Tree of Life, an API gives researchers advanced access to the data of about two million species, the phylogenies that have been created to illustrate possible relationships between them, and the underlying data and methods of synthesis. “For example, it will be possible to select smaller trees for specific species or find out how many studies there are for a particular node within the database,” says Karen Cranston, the lead investigator of the project. (more…)


Connecting millions of data points in a graph database

Creating ‘Facebook’ for species

Neo4j screenshotThe Open Tree of Life database is not just a list with about two million species. Information is added about their special characteristics and possible relationships with others as well. “It may become tens or hundreds of million pieces of data when we are all done.”

Stephen Smith, an evolutionary biology professor at the University of Michigan, is working together with the other researchers of the Open Tree of Life project to develop the programs and tools that will be used to construct the full tree of life. Scientists from all over the world can then synthesize all the information in the database.

“We are currently building the back-end of the Open Tree of Life. We need to create software that allows us to put all our information in a graph network, so that we can easily retrieve the information that researchers are specifically looking for.” (more…)


“We need a sense of ownership of phylogenetic trees”

Where are the fungi datasets?

FungiA couple thousand fungi phylogeny studies have been published in the past twelve years. Clark University postdoc researcher Romina Gazis has gone through all of them. Now she is working on a bigger challenge: finding all the trees and datasets that were the foundation of those studies.

Ideally, all scientists who publish a phylogenetic tree would also deposit the datasets they used to create such trees at a publicly available online database. That allow other researchers to synthesize data from different sources to advance the knowledge about relationships between certain species and their evolutionary history.

Unfortunately, most of those datasets are not publicly available. Gazis only found datasets for about a quarter of the two-thousand fungi articles she surveyed. “Around 600 studies had tree files available, but not necessarily complete,” she concluded. “Some scientists deposited one but not all the trees.” (more…)


Tree of Life: Are big changes looming on the horizon?

All species like some gadgets

Photo by PublicDomainPictures (Creative Commons Deed CC0)While movie hero James Bond gets his spy gadgets from his loyal developer Q, almost every other species on Earth has to put a little more effort in armoring themselves. But that does not mean they cannot rely on some good ol’ friends to do so. In fact, the acquisition of genes from two or more species through lateral gene transfer can lead to innovations that at times can be painful—sometimes even deadly—to others.

One of those evolutionary novelties is noticeable for certain types of jellyfish that developed the ability to sting after their ancestors acquired a gene from a bacterium and incorporated that material in their own DNA. This gene transmission helped jellyfish to create an innovative defense tool to fend off other species that could endanger them. The result is quite frightening: more humans get killed by jellyfish than sharks. (more…)


Small portion of phylogenetic data is stored publicly

‘The glass is still pretty empty’

Sometimes you wonder whether the glass is half full or half empty.

But when it is only filled for four percent—the other 96 percent is just air—there is only one conclusion: it is time for more.

At least that is what some scientists in the phylogenetic community argue, because only about four percent of all published phylogenies are stored in places such as TreeBASE or Dryad. Their message is quite simple: it is time to bring together more databases with estimations on how species are possibly related to each other.

Several journals in the evolutionary biology field recently adopted policies that encourage or require contributors to make their data publicly available online. Yet, this only leads to the storage of a very small percentage of ten-thousands of phylogenies that have been constructed in the past few decades.

Of course, there are also other ways to receive data that are not stored on the Internet, but those alternatives are commonly not the most efficient routes. For instance, it is possible to send an email to a scientist who published a phylogenetic tree and “sometimes wait for six months to maybe get a response—either with or without the data,” says Keith Crandall, one of the Open Tree of Life investigators and the founding director of the Computational Biology Institute at George Washington University.

(more…)


You don’t want to build a new tree from scratch?

‘Let the computer do the work’

Creating a phylogenetic tree is no easy task. It usually involves a complex synthesis of multiple datasets, but it leads to much satisfaction when all work is done—until new data come in.

Then, the process typically starts all over again: building a new tree from scratch.

Mark Holder, a professor of statistical phylogenetics at Kansas University and one of the investigators of the Open Tree of Life project, maintains that there is a real need for scientists to have access to digital tools that save them from doing quite a few labor-intensive procedures.

“In the past, researchers combined information from different trees and then analyzed the data. But they never made good computer systems that allowed for continuous updating. They would not be able to see how an entire tree would look like when they added more data or another individual tree. In that case, they had to start over.”

(more…)


Puzzling:

Connecting millions of pieces

Creating the entire tree of life is like completing a jigsaw puzzle with more than two million pieces. And to make it even harder; the illustration of how the solved puzzle would look like is missing.

No one knows precisely how all pieces are related.

This disparity is unmistakably demonstrated by disagreements between evolutionary biologists about how certain species and branches are linked together. Throughout the years they have created a large variety of trees with specific groups of species that contradict each other. For example, one researcher maintains that species A is the closest living relative of species B, but another scientist thinks that species C is actually most closely related to B. (more…)


Tweet!

 

Follow us on Twitter (@opentreeoflife) for daily news about new and endangered species, evolutionary biology, phylogeny, and biodiversity.

#opentree

 


Mystery:

Is it a plant? Or is it a monkey?

AotusIt should not be hard to recognize the differences between furry night monkeys and the bright yellow flowers of golden peas. But they have something peculiar in common that leads to some confusion once in while: their name. Both genera are officially known as Aotus.

There are about two million known species on the planet, so it should not come to a surprise that scientists accidentally have given certain species, or groups of species, similar names. For instance, Proboscidea is considered an order of elephants, but it is also the name for the genus of devil’s claws. Other examples include Myrmecia pyriformis (insect and green algae), Ficus elegans (mollusc and plant), Ormosia nobilis (insect and plant), and Trigonidium grande (orchid and katydid).

(more…)


Teamwork:

Across disciplinary boundaries

The interdisciplinary team of the Open Tree of Life project

What do a fungal evolutionary biologist and a computer scientist have in common?

It is usually easier to name a long list of differences, but that does not mean that those scholars are investigating different issues all the time. They may be very much interested in the same problems, yet apply different perspectives and methods in search for answers.

Those scientists could continuously work on their individual research projects for may years. However, in some cases only an interdisciplinary collaboration leads to a solution. The investigators of the Open Tree of Life project hope this will be the case for them as well. Their goal: creating a tree of life that includes all 1.9 million known species. (more…)


Do you like us?

Find us on Facebook!

Open Tree of Life has launched its Facebook page. You can keep yourself updated about the latest news regarding the project. And, if you have any questions or comments, please let us know.

Follow us on Twitter if you want the latest news and research studies about phylogeny, taxonomy, new species, biodiversity, and conservation efforts from all around the world.


Help!

Wanted: All your favorite trees

With eleven investigators, the Open Tree of Life project is already a large-scale research endeavor. But that does not mean that they can add all 1.9 million known species to a database by themselves. In fact, they are looking for help.

A lot of help.

The main goal of the project is to merge all existing phylogenetic trees in one overarching tree of life. In the past few months, the researchers have been working on software applications to make it possible to store all known species and, more important, to specify how they are all linked to each other in evolutionary terms.

(more…)


Quiz time!

Dear Colleagues,

Put on your quiz hats! We need some good questions!

As our team works to build an Open Tree of Life for professionals we are also working on a educational version of the tree for the everyone else, meaning educators, students, and the public in general.This public site will have a FUN QUIZ to test people’s knowledge of evolution, and we need questions for it!

SUBMIT YOUR QUESTIONS HERE

SAMPLE QUESTIONS:
Easy:
• Sponges fall within which major group on the tree of life? (animal, plant, bacteria)
• Which are mushrooms more closely related to: (animals, red algae or plants?)
• How many origins of life were there on Earth? (1, 2, 3)
Medium:
• Which organisms represent the greatest biomass on Earth?
(bacteria and archaea, mammals, fish)
• How many major groups of organisms are represented in a ham sandwich? (1, 2, 3)
• Genes (i.e. portions of genomes) yield the same estimate for the ToL? (Yes, No, Sometimes)
Expert:
• The top 10 infectious agents on earth appear where on the tree? (bacteria only, in both bacteria and eukaryotes, in both bacterial and archaea)
• Each gene sequenced and analyzed yields the very same answer for the ToL? (Yes, No, Sometimes)You can submit up to three questions with this form, but feel free to submit more by starting a new one!

What data should we collect about the input trees for the tree of life?

The absence of a formal reporting standard for phylogenetic analyses is a major impediment for digital access and reuse of published gene trees and species trees.  Efforts are underway to develop a standard for Minimal Information About Phylogenetic Analyses (MIAPA).  An important part of this process is community input on metadata – what is important for use and evaluation, and what is reasonable to expect from producers of trees?

Results from this survey will inform two efforts: the collection of digital phylogenetic data for Open Tree of Life and the development of a minimum information standard for reporting phylogenetic analyses (MIAPA, http://www.evoio.org/wiki/MIAPA).  If you have any questions, please contact Karen Cranston, National Evolutionary Synthesis Center (karen.cranston@nescent.org).

Please add your opinion here


What are your favorite species?

Dear Colleagues,

We need your help creating a list of exemplar species from across the tree of life for our public tree!

As our team works to build an open tree of life for the systematics community, we are also working on a educational version of the tree for the public . Our goal is to depict about 200 better-known (i.e. phylogenetically or otherwise important in some way (pathogen, food source, etc.) species from all three domains of life. The intended audience of this effort includes educators, students, and the public in general.

Please click this link to vote for your 5 best exemplars.

And please join the OpenTree conversation through our websiteemail, and Twitter (opentreeoflife).Thank you!


NSF’s press release on the Open Tree of Life

Press Release 12-106 (original article)
Assembling, Visualizing and Analyzing a Tree of All Life

National Science Foundation grants will bring together what’s known about how species are related

The “Open Tree of Life” is one of three major new scientific projects funded by the NSF.

June 4, 2012

A new initiative aims to build a comprehensive tree of life that brings together everything scientists know about how all species are related, from the tiniest bacteria to the tallest tree.

Researchers are working to provide the infrastructure and computational tools to enable automatic updating of the tree of life, as well as develop the analytical and visualization tools to study it.

Scientists have been building evolutionary trees for more than 150 years, since Charles Darwin drew the first sketches in his notebook.

Darwin’s theory of evolution explained that millions of species are related and gave biologists and paleontologists the enormous challenge of discovering the branching pattern of the tree of life.

But despite significant progress in fleshing out the major branches of the tree of life, today there is still no central place where researchers can go to visualize and analyze the entire tree.

Now, thanks to grants totaling $13 million from the National Science Foundation’s (NSF) Assembling, Visualizing, and Analyzing the Tree of Life (AVAToL) program, three teams of scientists plan to make that a reality.

(more…)


Follow

Get every new post delivered to your Inbox.

Join 215 other followers