Mapping the Tree of Life: the ARBOR Project
Open Tree of Life met with ARBOR, a program funded by the National Science Foundation, to talk about what changes have been made featuring the synthetic tree of life. We spoke with Dr. Luke Harmon, an associate professor at the University of Idaho’s department of Biology. Dr. Harmon has been using comparative biology to determine what the tree of life can tell us about evolution over long time scales.
What has ARBOR been working on right now?
Comparative Biology is at the heart of the ARBOR project. Using the evolutionary relationships among species, we can learn something about trait evolution and the formation of new species. For example, there really is no basic ‘ladder of life’ stemming from simpler organisms to more complex; instead, evolution varies among groups and through time in complex and interesting ways. It’s hard to do what we do with traditional tools. Instead, we have to use new tools to analyze how species have diversified to generate the tree of life
How have phylogeny studies changed over time?
A lot of progress has been made in the last twenty years regarding our understanding of the relationships among different species. We now know a lot more about how species are related to one another and how they evolved from their common ancestors. The Open Tree of Life is the best possible example of this sort of synthesis – it’s almost like the human genome project in that it is generating a very good map that will connect all organisms on earth in a single phylogenetic tree. One problem, though, is that there is just so much information contained in large phylogenetic trees, and we don’t always know how to extract information about how organisms evolve. ARBOR is developing tools to read the stories of evolution from these phylogenies.
Building an API for the Open Tree of Life database
Do you want an app for this?
The developers of the Open Tree of Life would like to know from the phylogenetic community what kind of information they want to extract from its database when the first draft is released later this year. With those preferences, it is possible to develop an API that gives scientists the opportunity to build their own websites or software packages that use the data.
An API (application programming interface) is a digital tool that allows one website or software program to “talk” to another website to dig up certain pieces of data. For instance, a lot of people use Tweetdeck to navigate the ongoing bombardment of messages in the Twittersphere. In that case, Tweetdeck is connecting to Twitter, through its API, to receive and order the messages according to the preferences of the user.
In case of the Open Tree of Life, an API gives researchers advanced access to the data of about two million species, the phylogenies that have been created to illustrate possible relationships between them, and the underlying data and methods of synthesis. “For example, it will be possible to select smaller trees for specific species or find out how many studies there are for a particular node within the database,” says Karen Cranston, the lead investigator of the project. (more…)
Quiz time!
Put on your quiz hats! We need some good questions!
SUBMIT YOUR QUESTIONS HERE
• Sponges fall within which major group on the tree of life? (animal, plant, bacteria)
• Which are mushrooms more closely related to: (animals, red algae or plants?)
• How many origins of life were there on Earth? (1, 2, 3)
• Which organisms represent the greatest biomass on Earth?
(bacteria and archaea, mammals, fish)
• How many major groups of organisms are represented in a ham sandwich? (1, 2, 3)
• Genes (i.e. portions of genomes) yield the same estimate for the ToL? (Yes, No, Sometimes)
• The top 10 infectious agents on earth appear where on the tree? (bacteria only, in both bacteria and eukaryotes, in both bacterial and archaea)
• Each gene sequenced and analyzed yields the very same answer for the ToL? (Yes, No, Sometimes)You can submit up to three questions with this form, but feel free to submit more by starting a new one!
What data should we collect about the input trees for the tree of life?
The absence of a formal reporting standard for phylogenetic analyses is a major impediment for digital access and reuse of published gene trees and species trees. Efforts are underway to develop a standard for Minimal Information About Phylogenetic Analyses (MIAPA). An important part of this process is community input on metadata – what is important for use and evaluation, and what is reasonable to expect from producers of trees?
Results from this survey will inform two efforts: the collection of digital phylogenetic data for Open Tree of Life and the development of a minimum information standard for reporting phylogenetic analyses (MIAPA, http://www.evoio.org/wiki/MIAPA). If you have any questions, please contact Karen Cranston, National Evolutionary Synthesis Center (karen.cranston@nescent.org).
Please add your opinion here
What are your favorite species?
Dear Colleagues,